
24
POINTS

XIUMEI XUE

2024.03.20

⚫ Rule Introduction

⚫ Rundown Brief

What

does it

do?
01

Rule Introduction

⚫ You will be given 4 random cards from 1 to 9 (“A”

refers to 1), and three entry levels vary

⚫ You can use + - x / to generate a result of 24, and

each card should only be used once

⚫ Decimal, fraction or negative number can appear

during operations

⚫ Also, a timer will be set according to your chosen

level (Easy: 3min | Medium: 1min30s | Hard: 60s)

⚫ If you can get 24 in limited time, you win, or

you fail.

Dialogue System
+

Page Interaction

=
Dialogue-Driven Interaction

Rundown Brief

countdown

display your expression/hint

⚫ Platform and Technologies

⚫ Library

Technicalities02

Technicalities

 Platform

• Web Platform based

 Backend Technology

• Node.js (LTS version)

• Package Manager: Yarn

• Azure service for ASR&TTS&NLU

 Frontend Technologies

• JavaScript (Xstate, vue.js framework)

azure.js – export relevant KEY
dm.js – manage dialogue-driven interaction
main.js – control the main logic and flow of the game

• HTML

index.html – the main entry point of the application,
containing the structure and layout of the web page

• CSS

style.css – define the styling rules for HTML elements

Technicalities| Library

• Import a third-party JS library:
Poker.JS
https://tairraos.cloud4v.org/Poker.JS/#english-version-readme

⚫ Challenges

⚫ Relation to course contents

⚫ Future Work

Recap &

Outlook03

Recap | Challenges

 Variable sharing

• variable assignment within dmMachine => no change
outside

dmActor.subscribe((state) => {

targetTime = state.context.targetTime;

}); // always reflects the latest state of the targetTime
value in the dmActor

 Utterance Collapse

• Use after for delayed transitions- “Have you thought of
a solution?”

• Player action unpredictable

 Interaction Triggered Utterance(Solved)
function successUtter() {

dmActor.send({

type: "WELLDONE"

});

}

Course contents

 Most useful part(s)

• Understanding and Implementation: ASR+TTS+NLU+DM

• Lightweight Product Development Capability

 Statecharts as an implementation framework

• Reduced state counts-guard transition, history…

• Structural

• Rule-based- more flexibly?

• Understandable

*(Xstate) Gammar Acquisition!

 Development process

• Design the main logic => Include the dialog flow =>
Combination and coordination

• Test by myself, by peers => Bug fixing

*Not relates to ethical concerns

Future work

 In general, my game is almost end-to-end
completed

• Improvements on level distinction

• Enhancing the coordination between Dialogue and
Interaction

• Exit & Replay

 About conversational features

• Assign different voice styles in different
occasions – e.g. succeed => “cheerful”, fail => “sad”

• Fix/avoid utterance collapse as much as possible
- adjust delayed time flexibly?

• Mixed-initiative – collect demand by input rather than

selection in given choices

T H A N K S

